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Abstract

In today’s world, heart diseases are becoming more prevalent
and common, threatening the health of many people. Diag-
nosing heart disease at an early stage is an important topic for
the medical field. In this paper, we explore the use of machine
learning and deep learning techniques to classify the pres-
ence or absence of disease from heartbeat audio. We explore
various machine learning algorithms and deep learning archi-
tectures, including Multilayer Perceptrons (MLPs), Convolu-
tional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), and ensemble models, trained on the CirCor DigiS-
cope Phonocardiogram dataset. Our experiments demon-
strate promising results, with the best-performing model
achieving a test accuracy of around 69%.

1 Background

Heart disease is a prevalent health problem and early detec-
tion can significantly improve patient outcomes. Our project
aims to develop a machine learning and deep learning based
system to predict heart disease from heart sound recordings.
Traditionally, doctors rely on auscultation (listening to heart
sounds) and advanced imaging techniques such as MRI and
CT scans for diagnosis. However, these methods can be time-
consuming and resource-intensive. Our approach leverages
the power of machine learning and deep learning to analyze
heart sound recordings, providing a faster and more conve-
nient alternative for initial screening.

2 Methodology

Our approach consists of three main parts: data collection
and preprocessing, conventional machine learning, and deep
learning experiments. We use the CirCor DigiScope phono-
cardiogram dataset and preprocess the data using various
techniques, including filtering, thresholding, and data aug-
mentation. For traditional machine learning, we explored al-
gorithms such as Logistic Regression and SVM, which are
trained on audio features and patient metadata.

2.1 Data Collection, Processing

We chose the CirCor DigiScope Phonocardiogram dataset,
a collection of recordings by stethoscope and labeled by ex-
pert cardiologists indicating the patient’s cardiac condition.
It contains a total of 33.5 hours of audio data.

Data preprocessing is a crucial step in preparing the heart
sound recordings for machine learning and deep learning mod-

els. We applied several techniques to enhance the quality and
usability of the data. Pre-filtering involved removing por-
tions of the audio that did not contain heartbeats, ensuring
that only relevant segments were used for analysis. Frequency
thresholding involved cutting off frequencies above 450Hz to
reduce noise and focus on the relevant frequency range for
heart sounds. Data augmentation techniques, such as ex-
tracting subsets of the audio with different durations, were
employed to increase the diversity and size of the training
data.

• MFCC - Spectral characteristics of sound.

• Chromagram - projected audio onto 12 bins represent-
ing the 12 distinct semitones (or chroma) of the musical
octave.

• NMF - Decomposes a non-negative audio representation
matrix into two lower-rank non-negative matrices, W
(capturing the underlying patterns) and H (activations)
in the data. We use the norm of the matrix of W as one
of our feature representations.

• Band Power - Extract feature in each frequency range.

2.2 Conventional Machine Learning

Conventional machine learning approaches were explored as
a baseline for heart disease prediction. We trained models
like Kth Nearest Neighbors, Logistic Regression, Support Vec-
tor Machine, and Random Forest on a combination of au-
dio features and patient metadata. These features included
Mel-Frequency Cepstral Coefficients (MFCCs), chromagrams,
mel-spectrograms, norm of NMF matrix, band power, and pa-
tient demographics. The models were evaluated using metrics
such as accuracy, precision, recall, and F1-score. We also used
two innovative training methods to help us get the optimal
combination of models and features more efficiently.

• Train models on a mixture of features. We defined three
different feature sets and tried models on them. The
same model can be trained on different features so that
we can know the most suitable feature for one type of
model.

• Train different models on the same features. We defined
the same features in the first step, then we trained all
different models on them to get the best performance
model.

On top of these training methods, we used the voting
method. By aggregating the results of all model predictions
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and selecting the prediction with the highest number of votes
as our final prediction, the robustness of the model can be
significantly improved.

2.3 Deep Learning Experiments

Deep learning techniques were extensively explored for our
project. We experimented with various architectures and
input representations, such as 1D-CNNs on MFCCs, MLPs
and CNNs on concatenated features (chromagrams, mel-
spectrograms, MFCCs, and patient data), and 2D-CNNs on
mel-spectrograms. Additionally, we investigated advanced
models like multiscale CNNs and Conv-RNNs, which com-
bine the strengths of convolutional and recurrent layers for
analyzing sequential data.

• 1D-CNN with MFCCs. The architecture consists of 15
layers. We employ a series of Conv1D and pooling layers
to extract features and reduce spatial dimensions, fol-
lowed by fully connected layers that consolidate these
features for a final two-class classification output. The in-
put data is MFCCs features, and we eventually achieved
62.38% accuracy in the test set.

• MLP with Concatenated Feature - This experiment uses
a two-hidden-layer CNN model, with a logistic acti-
vation function. We concatenate 4 categories of fea-
tures and feed them to the model: Chromagram, Mel-
Sspectrogram, mfcc, and patience metadata. Through
hyper-parameter tuning, we hit a best performance of
66.46% in accuracy and 67.28% in F1 score.

• CNN with Concatenated Feature - Run multiple CNNs
on different features and create another CNN with con-
catenated results from those CNNs as input.

• CNN on 2D-Mel-Spectrogram Feature - This experiment
uses a 2D-CNN model, with three convolution blocks.
We purely feed the 2D-Mel-Spectrogram feature to our
model. All the samples are padded to the same length.
We hit a best performance of 56.01% in accuracy and
49.64% in F1 score.

• Conv-RNN - Combining the spatial feature extraction
capability of convolutional layers with the temporal pro-
cessing strength of LSTM layers.

• Concatenated Multiple MLP - Combining multiple MLP
with an output shape of 1 together with a linear layer
to get the final result. Trained with feature extraction
methods, with N feature sets as input, N MLPs will be
created and combined, each MLP will be feeding from
one feature set.

• RNN / LSTM - Classical DL models for time series data.
Trained with raw audio data after preprocessing.

3 Advanced Models

To further enhance the performance of our heart disease pre-
diction system, we have incorporated advanced deep learning

architectures, ResNet and Multiscale CNN. ResNet is partic-
ularly noted for its ability to address the vanishing gradient
problem, thereby facilitating more efficient training of deeper
models. Conversely, Multiscale CNN employs an array of con-
volutional filters of varying sizes to capture features at mul-
tiple scales.

• RESNET - The implementation of ResNet within our
framework is specifically tailored for one-dimensional in-
put data, such as ECG signals. Our model architecture
consists of multiple ResNet blocks, each taking ECG data
points as input—representing various features—and pro-
ducing outputs correlated to targeted class categories.
Each block within the ResNet architecture processes the
input through two convolutional layers, followed by batch
normalization and ReLU activation functions, enhancing
both the non-linearity and stability of the model during
training. The ResNet model was trained using a diverse
set of input features, including chromaticity maps, 1D
and 2D Mel-spectrograms, Mel Frequency Cepstral Co-
efficients (MFCCs), band powers, and Non-Negative Ma-
trix Factorization (NMF) representations. The best per-
formance score for the RESNET model yielded 55.22%
accuracy score.

• Multi-Scale CNN - In this experiment, we optimize our
base 2D-CNN model. Two new components are intro-
duced to the head of the network: The multi-Scale sam-
pler, and the channel recalibration module. On top of the
pipeline, the multi-scale sampler can enhance the model’s
ability to detect intricate details present at different lev-
els of granularity. After that, an average-pooling layer
will fusion the inputs from different samplers. Between
the samplers and following convolution blocks, we add a
channel recalibration module, which is designed to rec-
tify the lack of cross-channel interaction in the extracted
features. We still feed the 2D-Mel-Spectrogram feature
to our model. Through hyper-parameter tuning, we hit
a best performance of 58.22% in accuracy and 66.50% in
F1 score.

4 Results and Discussion

In terms of performance, we are using accuracy as our main
evaluation. Table 1 contains the best results from each of
our main models. We applied a hard-voting on multiple
machine-learning models including logisticRegression, SVC,
KNeighborsClassifier, DecisionTreeClassifier, RandomForest-
Classifier, and GaussianNB and got a model with 63.07% ac-
curacies as our baseline model. For the deep learning models
we have. The best-performing model was a 1D CNN model
with band power structure the CSV file contains more de-
tailed information about patients, i.e. gender, and age as in-
put, achieving a test accuracy of around 69%. We also tried
some models without that CSV file as input but the best re-
sult from those models is only with 55.22% accuracy. This
means additional information from the audio is significantly
helpful for this topic. Additionally, we also tried to train simi-
lar models with time series data only and abstracted features
from it. Which results in abstracted features that can get
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better results in most cases. In 1D CNN, we got models with
67% accuracy on average while training with different com-
binations of abstracted features, however, the similar CNN
structure with time series can only get 54% accuracy on aver-
age. With those features abstracted from the audio data, we
got several models beat our baseline machine-learning model.
Single MLP gets 66.46% accuracy, 1D CNN gets 68.95% ac-
curacy, Concat-CNN gets 64.22% accuracy, Conv-RNN gets
64.38%. While these results are encouraging, there is still
room for improvement, and we plan to explore alternative
feature representations and advanced architectures in future
work.

Table 1: Results

Model Features Accuracy

Hard
Voting
ML

MFCC + CSV 63.07

Single
MLP

Chromagram + 1D
Mel-Spec + MFCC +
Opensmile + CSV +

Time Series

66.46

Multiscale
2D CNN

2D Mel-Spec 58.23

1D CNN Bandpower Struct + CSV 68.95

Concat-
CNN

Chromagram + 1D
Mel-Spec + MFCC +

Bandpower Struct + CSV
64.22

Conv-
RNN

1D Mel-Spec + MFCC +
Opensmile + CSV

64.38

ResNet
Chromagram + 1D

Mel-Spec + MFCC +
Time Series

55.22

Concat-
MLP

2D Mel-Spec +
Bandpower Struct +
Opensmile + CSV

59.11

LSTM
Chromagram + 2D

Mel-Spec + CSV + Time
Series

53.85

RNN
Chromagram +

Bandpower Struct + CSV
+ Time Series

50.00

5 Future Work

To enhance the performance of our current models, several
strategies for improvement and expansion are proposed, build-
ing upon the initial promising results. Despite these initial
successes, our models currently do not achieve the bench-
marks set by other studies in the field. A critical area iden-
tified for further development is the advancement of feature
engineering techniques, as we have come to realize that the

current set of features may not be optimal. Preliminary in-
vestigations suggest that the Wavelet Scattering Transform
(WST) could offer a more nuanced representation of time-
series data, such as heart sound recordings. This method
capitalizes on the temporal structure of the data, potentially
uncovering subtle patterns associated with pathological states
that are not captured by traditional feature extraction meth-
ods.

In addition to refining feature engineering, there is a need
for rigorous hyperparameter optimization of our deep learn-
ing models. Systematic tuning of parameters can significantly
influence model performance, suggesting that our current con-
figurations may not be optimal. Future work will include the
application of grid search and randomized search techniques
to identify the most effective configurations.

Moreover, we plan to integrate advanced neural network
architectures, such as attention mechanisms and transform-
ers, which have demonstrated considerable success in various
sequence modeling tasks. Their ability to model complex de-
pendencies and highlight relevant features in sequence data is
particularly promising for enhancing the interpretability and
accuracy of heart disease prediction models.

Finally, to address potential overfitting and improve the ro-
bustness of our predictions, we will expand our dataset to in-
clude a larger and more diverse set of heart sound recordings,
including those from adult populations. This broader dataset
will enable the training of models that are more adaptable
to varying patient demographics and clinical conditions, thus
enhancing their generalizability.

6 Conclusion

This study uses deep learning techniques to test different
methods to predict heart disease from phonocardiogram. We
built multiple deep neural network models such as MLP,
CNN, RNN.

Our experiments showed promising results. A 1D CNN
trained with band power and CSV files shows the best perfor-
mance of this experiment with an accuracy of about 68.95%.
Our other notable models include multiple MLPs trained
with different features (test accuracy 66.46%), CNN trained
with concatenate features (test accuracy 64.22%), Conv-RNN
(test accuracy 64.38%) and multi-scale CNN (test accuracy
58.23%).

Despite our current results, there is still room for improve-
ment. Future work includes studying alternative feature rep-
resentations. Such as wavelet scattering transform (WST),
performing large-scale hyperparameter tuning, and studying
the integration of attention mechanisms into the Transformer
architecture. On the other hand. We only have a small
dataset this time. If we could find or label a larger and more
diverse dataset. We believe that we can improve it with even
better accuracy.

Overall, this study demonstrates the feasibility and poten-
tial of using deep learning to predict heart disease from heart
sounds. This provides a faster and more convenient alterna-
tive to traditional diagnosis, which will ultimately help im-
prove the medical experience of patients with cardiovascular
diseases.
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