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1 Introduction

Toxicity detection, or toxicity classification, is a
common application in text classification. Our
project focuses on improving task adaptation ef-
ficiency for toxicity detection with Parameter-
Efficient Fine-Tuning (PEFT) and Knowledge
Distillation (KD). Our base model is a pre-
trained BERT classifier from Hugging Face,
Unitary/Toxic-BERT, which is able to detect the
toxicity of short comments. We aimed to adapt its
capability to classifying longer conversational in-
puts. By fine-tuning it on the lmsys/Toxic-Chat
dataset with different strategies, our work concen-
trate on the following aspects:

• Solving data imbalance (Done): While the
lmsys/Toxic-Chat dataset is highly imbal-
anced, with 92.5% toxic samples, we per-
formed balanced down sampling and con-
ducted fine-tuning experiments on both the
imbalanced and sampled datasets.

• Incorporating external knowledge into
fine-tuning (Done): Along with the inputs,
we utilized data from the OpenAI Modera-
tion API, a list of Moderation scores of dif-
ferent toxic categories. By designing a com-
bined loss function, we incorporated knowl-
edge distillation into the fine-tuning objective
by Multi-Target training and tested whether
KD enriches the learning.

• Introduce PEFT to different fine-tuning
strategies (Done): We conducted a compar-
ative analysis of full-parameter and LoRA-
based fine-tuning methods on both Single-
Target and Multi-Target training, evaluating
their training convergence speed, parame-
ter efficiency, and toxicity detection perfor-
mance.

2 Related Work

Toxicity detection has garnered significant atten-
tion in NLP due to its practical use case of mod-
erating online content. In this section, we will re-
view the foundational components in modern tox-
icity detection approaches that underpin our work,
including the use of Bidirectional Encoder Repre-
sentations from Transformers (BERT), parameter-
efficient fine-tuning (PEFT) methods, knowledge
distillation (KD), and multi-target optimization
strategies.

2.1 BERT in Toxicity Detection

BERT-based models have proven effective for tox-
icity classification tasks due to their ability to
leverage contextual embeddings. Unlike earlier
methods that relied on static word embeddings
such as Word2Vec or GloVe, BERT incorporates
bidirectional context, enabling it to disambiguate
subtle expressions of toxicity. For instance, prior
studies have shown that BERT-based classifiers,
such as Unitary Toxic BERT, perform well on
datasets containing short toxic comments by cap-
turing nuanced relationships between tokens and
context (Kenton and Toutanova, 2019). How-
ever, adapting BERT to handle longer conversa-
tional inputs remains a challenging task, partic-
ularly when addressing domain-specific language
variations and semantic complexity.

2.2 Parameter Efficient Fine Tuning

Traditional fine-tuning of pre-trained language
models often involves updating all parameters,
which is computationally expensive and storage-
intensive. PEFT techniques such as LoRA (Hu
et al., 2021), P-Tuning (Liu et al., 2021), and
IA3 (Liu et al., 2022) address these challenges
by focusing on lightweight parameter updates.
LoRA introduces low-rank adaptations to the



weight matrices, significantly reducing memory
requirements while maintaining competitive per-
formance. Similarly, P-Tuning and IA3 optimize
task-specific performance by tuning the numerical
prefixes in the input space and modifies intermedi-
ate activations. These methods have demonstrated
potential in various NLP tasks but require further
exploration in toxicity detection scenario.

2.3 Teacher Knowledge Enriched Learning

Knowledge distillation (KD) has been widely em-
ployed to transfer knowledge from a larger, well-
trained teacher model to a smaller student model
(Hinton, 2015). In the context of fine-tuning,
KD has been shown to enhance model gener-
alization by incorporating additional supervision
signals from the teacher. Recent studies high-
light the effectiveness of KD in augmenting pre-
trained models for specialized tasks, particularly
when training data is limited or imbalanced (Jiao
et al., 2019). By combining teacher-student learn-
ing paradigms with PEFT methods, it is possible
to achieve efficient task-specific adaptation with-
out sacrificing performance.

2.4 Multi-Target Optimization Strategies

Multi-target optimization involves designing mod-
els and objectives that balance competing learn-
ing goals. Techniques such as Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2014) have
been employed to improve robustness while main-
taining task performance. In toxicity classifica-
tion, multi-target learning has been used to inte-
grate diverse objectives, such as toxicity detec-
tion, sentiment analysis, and conversational under-
standing, within a unified framework (?). This ap-
proach allows models to capture richer linguistic
phenomena while mitigating over-fitting risks in
single-task settings. However, achieving effective
multi-task trade-offs requires careful calibration of
the optimization process, especially in resource-
constrained scenarios. In our fine-tuning experi-
ment, we used a weighting parameter σ 6.2.1, for
balancing the importance of learning toxicity clas-
sification capability and fitting the distribution of
moderation scores.

3 Dataset

In order to perform a convincing experiment, we
chose the lmsys/Toxic-Chat dataset, which is a
curated dataset specifically designed for toxicity

detection and moderation in user-AI interaction
domain. To have the dataset well-prepared for
our training, we conducted various pre-processing
procedures. Below, we detail the data annotation
of lmsys/Toxic-Chat, which is already done by
the author. Next, we describe our pre-processing
methodology.

3.1 Data Annotation

The lmsys/Toxic-Chat dataset contains toxicity
annotations on 10,000 user prompts collected from
the Vicuna online demo. The dataset utilizes a
human-AI collaborative annotation framework to
guarantee the quality of annotation while main-
taining a feasible annotation workload (Lin et al.,
2023). We believe that lmsys/Toxic-Chat can be a
valuable resource to drive our experiment further
with more persuasiveness.

3.2 Different Dataset Versions

The dataset consists of 2 versions of user prompts
annotated for toxicity and jailbreak behaviors. The
latest version, toxicchat0124, is built on the
earlier toxicchat1123 version, incorporating
model error analysis and additional annotations.
In version toxicchat0124, errors identified in
toxicchat1123 were corrected, with fixes re-
viewed by two annotators. Overall, the correc-
tions to toxicity labels were minimal (1.28% dif-
ference), and 20 additional human-annotated ex-
amples were included. Our work is based on the
latest toxicchat0124 version, which incorpo-
rates updates enhancing data reliability and pro-
viding a consistent baseline for our model evalua-
tion.

3.3 Pre-processing

We loaded the toxicchat0124 version dataset
from Hugging Face first. To prepare the dataset
for our experiments, we conducted the following
pre-processing steps:

3.3.1 Data Cleaning
• Remove non-English inputs: Because the

base model Unitary/Toxic-BERT is only
trained on English data, we filtered out inputs
that were not in English to maintain linguistic
consistency between dataset and model.

• Formalize Moderation Scores: Moderation
scores for toxicity and jailbreak labels were
normalized and standardized from JSON text



Method Dataset LoRA Targets Key Parameters
Baseline Sampled/Full No Single ——

LoRA-Single Sampled/Full Yes Single r = 4, α = 16

Multi-Target Sampled/Full No Multiple σ = 0.8

LoRA-Multi Sampled/Full Yes Multiple r = 4, α = 16, σ = 0.8

Table 1: Summary of experimental configurations.

Strategy Dataset LoRA Time (Sampled) Time (Full)
Single Target Sampled/Full No 1 min 37 sec 15 min 35 sec
LoRA-Single Sampled/Full Yes 1 min 23 sec 13 min 43 sec
Multi-Target Sampled/Full No 1 min 40 sec 15 min 37 sec
LoRA-Multi Sampled/Full Yes 1 min 24 sec 14 min 01 sec

Table 2: Summary of training times for different strategies and datasets.

to columns of float to ensure a consistent rep-
resentation of all the targets.

3.3.2 Data Splitting and Sampling
• Re-split Train/Test Sets: The dataset splits

was initially set up as 1:1. We applied a 7:3
re-split to ensure a strong knowledge base in
the training data.

• Down-Sampling for Balance: Since the
dataset exhibited significant class imbalance
(92.5% of examples are toxic), we performed
down-sampling to balance the toxic and non-
toxic examples.

Choosing the proper data version, along with
these pre-processing steps, helped us built high-
quality, balanced data for training and evaluation,
and eliminated key issues like inconsistent anno-
tations and class imbalance.

4 Training Environment

We tested on 2 different machine configurations,
and officially run all the experiments on GPU.

• GPU Setup: Google Colab’s T4 GPU was
used for model training (585 MHz, 16GB
memory).

• CPU Setup: GCP E2 machine, with Intel®
Xeon® Gold 6253CL processor (3.1 GHz).

• Comparison: The GPU-based training was
much faster. When using the sampled dataset
for full-scale hyper-parameter tuning, the
CPU took about 2 hours, whereas the T4
GPU only took 15 minutes.

5 Baseline

5.1 Single-Target Direct Training
For the baseline, we performed single-target direct
training, where the model is trained solely to pre-
dict the toxicity score without any auxiliary targets
or low-rank adaptation techniques.

Model Configuration

• Base Model: A pretrained transformer-based
classifier, bert-base-uncased.

• Output Dimension: The model is recon-
structed by setting num labels=1, where
a single output indicates the toxicity score.

Key Training Parameters

• Learning Rate: We set different learning
rates for different dataset scales. The full
dataset uses a learning rate of 1×10−5, while
the sampled dataset uses a learning rate of
2 × 10−5. Experimental results showed that
reducing the learning rate for the full dataset
leads to more stable loss convergence.

• Loss Function: Binary Cross-Entropy.

• Optimizer: AdamW (adamw torch).

Dataset Configuration We train and evaluate
the baseline model on two dataset scales:

• Sampled Dataset: A balanced sampled
subset of the full dataset, referred to as
toxicchat0124 sampled, suitable for
lightweight testing.

• Full Dataset: The complete dataset, referred
to as toxicchat0124 processed.



Model Accuracy Precision Recall F1 Score
Small Full Small Full Small Full Small Full

Baseline-Sampled 0.8993 0.9130 0.9259 0.4552 0.8681 0.8241 0.8961 0.5865
LoRA-Sampled 0.3472 0.4768 0.2442 0.0229 0.1458 0.1435 0.1826 0.0395
Baseline-Full 0.8507 0.9650 0.9810 0.8212 0.7153 0.6806 0.8273 0.7443
LoRA-Full 0.5000 0.9255 0.0000 1.0000 0.0000 0.0046 0.0000 0.0092
Multi-Target-Sampled 0.9097 0.9241 0.9470 0.4958 0.8681 0.8287 0.9058 0.6205
LoRA-Multi-Sampled 0.5868 0.9327 1.0000 0.8056 0.1736 0.1343 0.2959 0.2302
Multi-Target-Full 0.5000 0.9251 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LoRA-Multi-Full 0.5000 0.9251 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3: Performance metrics for all models across the sampled and full datasets.

Evaluation Performance evaluation of all exper-
iments will be given in the Evaluation Section (7).

6 Our Approach

6.1 Single-Target Training with LoRA
Building upon the baseline, we incorporate LoRA,
trying to reduce the computational costs.

LoRA Configuration

• Rank (r): 8. The rank of all LoRA layers.

• Alpha (α): 32. The scalar factor amplifying
the low-rank outputs.

• Target Modules: query, key, and value,
where LoRA is applied.

Comparison to Baseline LoRA freezes the ma-
jority of the base model’s parameters, which sig-
nificantly reduces the hardware requirements for
GPU memory. However, the training time on the
sampled dataset does not appear to be significantly
reduced (2). Evaluation details will be given in the
Evaluation Section (7).

6.2 Multi-Target Training
In this stage, we extend our approach to multi-
target training by collaborate toxicity detection to-
gether with knowledge distillation. In our hypoth-
esis, the moderation scores from Open AI Mod-
eration API can act as a teacher model, guiding
our model in capturing richer contextual knowl-
edge beyond the primary toxicity label.

6.2.1 Multi-Target Direct Training
Multi-Target Setup

• Number of Targets (N TARGETS): 12.
Toxicity and 11 of Moderation Scores.

• Sigma (σ): 0.8. A weighting parameter for
balancing the importance of learning toxicity
classification capability and fitting the distri-
bution of moderation scores. σ = 1 will let
model learn only toxicity classification. σ =
0 will let the model fit only the distribution of
moderation scores.

Training Objectives

• Primary Objective: Minimize the loss from
the toxicity classification task, which remains
our primary evaluation focus.

• Knowledge Distillation Objective: Perform
knowledge distillation to learn from the mod-
eration scores provided by the OpenAI Mod-
eration API. The goal is to capture the dis-
tribution of these scores and incorporate ad-
ditional knowledge during training, enabling
the model to understand more nuanced pat-
terns beyond the primary toxicity labels.

6.2.2 Multi-Target Training with LoRA
Finally, we incorporate LoRA into the multi-target
training pipeline, leveraging its efficiency across
both datasets.

Compare to Multi-Target Direct Training
LoRA significantly reduced the memory and com-
putational needs. Evaluation details will be given
in the Evaluation Section (7).

6.3 Summary of Experimental Setup
Table 1 summarizes the experimental configura-
tions across all methods.

7 Evaluation

In this section, we evaluate the effectiveness of the
proposed methods under multiple configurations



Figure 1: Performance comparison across different models on the full test dataset.

and fine-tuning strategies using metrics such as ac-
curacy, precision, recall, and F1-score. The evalu-
ation covers two datasets: the sampled (small) test
set (toxicchat0124 sampled) and the full
test set (toxicchat0124 processed). At
the end, we also delivered a time consumption
analysis.

7.1 Evaluation Metrics

Table 3 fully summarizes the evaluation results
across all models for both datasets. To make it
easier to understand and compare, we selected the
results from full test set and displayed on figure 1.

Intuitive Observed Trends Analysis

• Baseline

In general, the Baseline setting is the most
stable one. Looking at Precision and Recall,
we can see that there is at least one error
model in the categories of LoRA or Multi-
Target training, which predicts all samples as
non-toxic. We will discuss this issue in the
next section. However, for the Baseline set-
ting, the test results are relatively good under
both dataset sizes.

Comparing the performance of Baseline-Full
and Baseline-Sampled, from the perspective
of the classifier, Baseline-Full’s indicators are

better than Baseline-Sampled. However, a
closer look at the data shows that the Re-
call of Baseline-Sampled is stronger than
Baseline-Full on both datasets. This is coun-
terintuitive because there are more toxic sam-
ples in the Full Dataset. The potential expla-
nation is that training on a larger dataset re-
quires more epochs.

• Effects of LoRA

The LoRA-Sampled model demonstrated
reduced accuracy (34.72%) and F1-score
(18.26%) compared to the baseline. This
suggests that while LoRA effectively reduces
parameter storage requirements, its perfor-
mance may degrade on smaller datasets.

In contrast, the LoRA-Full model excelled
with a recall of 100% but at the cost of preci-
sion, resulting in an F1-score of 0.92%. Ob-
viously this is an error model. After checking
the model output, we found that the model
classified all samples as non-toxic. This
means that the model is under-fitting and the
distribution of logistics has not been adjusted
to the appropriate position.

• Effects of Knowledge Distillation

The Multi-Target-Sampled model showed a
strong performance on the sampled dataset,



Figure 2: Logistics output after Sigmoid activation for different models on the full test dataset.

achieving an F1-score of 90.58%, showing
the benefit of using KD-enhanced training
even with limited data.

Same as LoRA-Full model, Multi-Target-
Full model is also an error model. By
checking the output, we found that this
model classified all samples as non-toxic,
which indicates under-fitting. Comparing
Multi-Target-Sampled and Multi-Target-
Full model, like what we seen in baseline
setting, it indicates that larger datasets need
more training loops.

• Knowledge Distillation in LoRA

The LoRA-Multi-Sampled model improved
over LoRA-Sampled setups, achieving an
impressive increase of 45% in F1-score
on the full dataset. What’s even more
amazing is that the LoRA-Multi-Sampled
model achieves 100% Precision on the Small
dataset, beating all other models. This shows
the great potential of KD-enhanced training
in a limited parameter tuning space.

7.2 Time Consumption Comparison

Table 2 summarizes the training times for baseline,
and both Regular Training and LoRA Training on
both sampled and full datasets with single and
multi-target setup. LoRA-based models consis-
tently required less time than their full-parameter
counterparts, with reductions of up to 12% on the
full dataset. The acceleration ability of LoRA in-
creases as the size of the data set increases.

7.3 Overall Performance Comparison

Figure 1 provides a comparative analysis of model
performance. Key takeaways include:

• Baseline models tend to offer balanced per-
formance, indicating reliable generalization.

• LoRA models display trade-offs between
training speed, storage needs versus perfor-
mance. However, as the size of the dataset
increases, the sacrifice in performance will
gradually decrease.

• Multi-Target training, or KD-enhanced fine-
tuning, has an amazing performance im-
provement. When using full parameter tun-
ing, this advantage is not very obvious for one
target among multiple targets, but when us-
ing LoRA, the knowledge-guided fine-tuning
with the help of the teacher model will bring
huge improvements.

8 Error Analysis

In this section, we examined the cause of er-
ror models and analyze patterns of common error
cases of different models.

8.1 Probability Distribution Analysis

Logit density distributions for selected models are
plotted in Figure 2. Key observations include:

• LoRA Models

LoRA-Sampled shows higher variance,
which suggesting inconsistent predictions,



especially for inputs near the decision thresh-
old (0.5). LoRA-Full exhibits extreme con-
fidence in classifying inputs as non-toxic. At
the same time, the entire distribution is on the
left side of 0.5, which also reveals the fact
that it is under-fitting.

• Multi-Target Models

Both LoRA-Multi-Target-Full and Multi-
Target-Full models demonstrate the same
issue as LoRA-Full. The explanation for
the three error models is that either large
dataset scale, LoRA, or Multi-Target train-
ing requires more epochs. The combination
of them will need more, which leads to the
under-fitting we observed.

8.2 Concrete Misclassified Examples
We manual analyzed 10 commonly misclassified
examples and attempt to reveal their patterns:

• Semantic Ambiguity: Inputs like ”Can you
tell me how to implement a 3-layer CNN
in PyTorch?” were flagged as toxic due to
phrases like ”layer” being misinterpreted in
specific contexts.

• Domain-Specific Language: Examples con-
taining technical jargon (e.g., ”Write Ku-
bernetes manifest for deploying WordPress”)
were often misclassified, particularly by
LoRA-based models, highlighting gaps in
domain adaptation.

• False Positives in LoRA Models: Many
false positives were observed in LoRA-Full,
where benign prompts were classified as
toxic due to overly aggressive recall opti-
mization.

9 Conclusion

Our project demonstrated the potential of com-
bining PEFT and Knowledge Distillation for fine-
tuning. While LoRA and Multi-Target approaches
showcase computational efficiency and perfor-
mance improvement, some configurations expe-
rienced under-fitting due to insufficient training
epoch.

In Summary, if we want to have a model
fine-tuned on limited training resources and pa-
rameter storage resources, combining LoRA
and Knowledge Distillation will be a very good
choice.

Our future work will focus on training the
under-fitted models with additional epochs, then
redo the evaluation. Self-learning thresholds to
dynamically optimize decision boundaries is an-
other direction we plan to attempt.

10 Acknowledgments

• I wrote the whole report by myself (really tir-
ing!!!). Then I used ChatGPT to check typo
and adjust formatting.

• I struggled with the layout of tables at first,
because the table would always be cut off
when displayed in a certain column. I asked
ChatGPT for help to make it display as I
wanted: breaking across two columns and
staying at the top of the page.
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